Diagnostic tools to evaluate a spatial land change projection along a gradient of an explanatory variable
发布时间:2010-01-01 浏览量:

 

Abstract: 

This paper proposes a method to quantify the goodness-of-fit of a land change projection along a gradient of an explanatory variable, by classifying pixels as one of four types: null successes, false alarms, hits, and misses. The method shows: (1) how the correctness and error of a land change projection are distributed along the gradient of an explanatory variable, (2) how the gradient of the explanatory variable relates to the stationarity of the land transition processes, and (3) how to use the insights from the previous two points to search for additional explanatory variables. The paper illustrates the method through a case study that applies the model Geomod in Central Massachusetts, USA. Results reveal that the model predicts more than the observed amount of change on flat slopes and less than the observed amount of change on steep slopes. One reason for these types of errors is that the land change process during the calibration interval is different than the process during the prediction interval with respect to slope. The method allows modelers to use the validation step as a diagnostic tool to search for potentially influential missing variables and to gain insight into land transition processes. The technique is designed to be applicable to a variety of types of land change models.

 

Key words: 

Accuracy; Calibration; Geomod; Model; Stationary; Validation;

 

Reference: 

Chen, H. and R. G. Pontius Jr. 2010. Diagnostic tools to evaluate a spatial land change projection along a gradient of an explanatory variable. Landscape Ecology. 25(9): 1319-1331.

 

Link:

https://link.springer.com/article/10.1007/s10980-010-9519-5

返回上级
Copyright © 2017 北京师范大学创新发展研究院 | 地址:北京市新街口外大街19号北京师范大学后主楼17层 | 邮编:100875 | 电话:010-58805875