Abstract:
The rapid growth of transport requirements in China will incur increasing transport energy demands and associated environmental pressures. In this paper, we employ a generalized data envelopment analysis (DEA) to evaluate the relative energy efficiency of rail, road, aviation and water transport from 1971 to 2011 by considering the energy input and passenger-kilometers (PKM) and freight ton-kilometers (TKM) outputs. The results show that the optimal energy efficiencies observed in 2011 are for rail and water transport, with the opposite observed for the energy efficiencies of aviation and road transport. In addition, we extend the DEA model to estimate future transport energy consumption in China. If each transport mode in 2020 is optimized throughout the observed period, the national transport energy consumption in 2020 will reach 497,701 kilotons coal equivalent (ktce), whereas the annual growth rate from 2011 to 2020 will be 5.7%. Assuming that efficiency improvements occur in this period, the estimated national transport energy consumption in 2020 will be 443,126 ktce, whereas the annual growth rate from 2011 to 2020 will be 4.4%, which is still higher than that of the national total energy consumption (3.8%).
Key words:
transport energy consumption; energy efficiency; data envelopment analysis
Reference:
Weibin Lin, Bin Chen, Lina Xie, Haoran Pan: “Estimating Energy Consumption of Transport Modes in China Using DEA”, Sustainability, 2015, 7(4): 4225-4239.
Link:
http://www.mdpi.com/2071-1050/7/4/4225/htm